

Agenda

- Introduction
- Photovoltaics
- ESPC Model
- Integrated ESPC Program for Navy Region Southwest (NRSW)
- Effectiveness of ESPC Model for DG/CHP Projects

Introduction

- Project Overview
- Facility Profile

Project Overview

- Facility Type: Navy Region Southwest (NRSW)
- Contract: Department of Energy (DoE) Western Region Super ESPC
- Prime Contractor: NORESCO Developed, Designed, Implemented, Commissioned, Financed and Guaranteed Savings for Project
- Project: \$22 million Multiple Technology Integrated ESPC Program
 - -Cornerstone PV Project Opened Door to Facility-Wide Energy Retrofit
 - -Other Integrated ESPC Measures Include:
 - Lighting Upgrade including Skylights and Controls
 - Microturbine CHP System
 - Irrigation Upgrade, Expansion and Control System
 - Conversion of HVAC System to VAV
 - Chiller Replacements
 - Air Compressor System Upgrades

Facility Profile

- Facility Size: 9,500,000 sq. ft.
- NAS North Island
 - 25+ MW Peak Demand
 - Over 200,000,000 kWh/year
 - \$20 \$25 Million Electric Bill
- NAB Coronado
 - 5 MW Peak Demand
 - 25,000,000 kWh/year
 - \$4 Million Electric Bill

Photovoltaics

- 30 kW Rooftop System
- 750 kW Covered Parking Structure System
- Project Benefits

30 kW System – Building 14, NAB Coronado

- System Ratings:
 - 30.1 kW(ac) Output
 - 49,765 kWh Annual Production
- System Details:
 - 275 109.3W PV Modules
 - Model PL-AP-130

30 kW System – Building 14, NAB Coronado

750 kW System – NAS North Island

- System Ratings:
 - 750 kW(ac) Output
 - 1,244,000 kWh Annual Production
- System Details:
 - Largest PV System in the Federal Government
 - -3,078 300W PV Modules
 - Model ASE-300-DG/50
 - Covered Parking Structure for 400 Spaces

750 kW System - NAS North Island

Project Benefits

- Provides Both Bases 1,293,765 kWh per Year of Clean Power
 - 3% of NASNI Peak Demand
 - 1% of NASNI Power Consumption
- Reduces Air Emissions
 - 309 Tons of CO₂ per year
 - − 486 lbs of NO_x per year
 - − 54 lbs of SO_x per year
- Provides Sources of On-Base Power
- Reduces Vulnerability to Disruptions to Off-Base Power Grid
- Facility Demonstrates Strong Environmental Commitment

ESPC Model

- Goals and Objectives
- Benefits of ESPC
- Cash Flow Example
- Distributing Account Funding Example

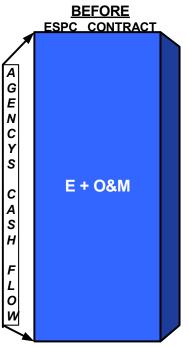
Goals and Objectives

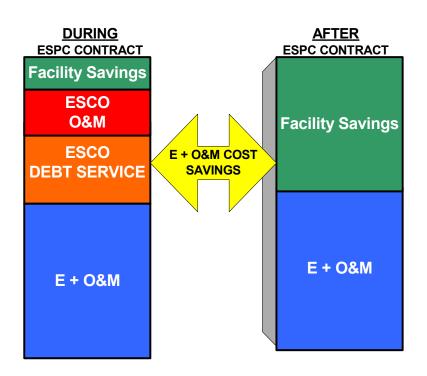
- Energy and Environmental
 - Save Energy
 - Reduce Pollution
- Upgrade Energy Infrastructure
 - Comprehensive & Integrated Evaluation of all ECMs
 - Replace Failed, Worn, Antiquated Equipment
 - Reduce Deferred Maintenance Burdens / Provide Operation,
 Maintenance and Repair Burden Relief
 - Improve System and Mission Reliability and Security

Financial

- Save Money with Verifiable Energy and Ancillary Cost Savings
- Obtain All Available Rebates/Incentives
- Unleash Private Sector Investment in Government Facilities
- Leverage Limited Capital Funding

Benefits of ESPC

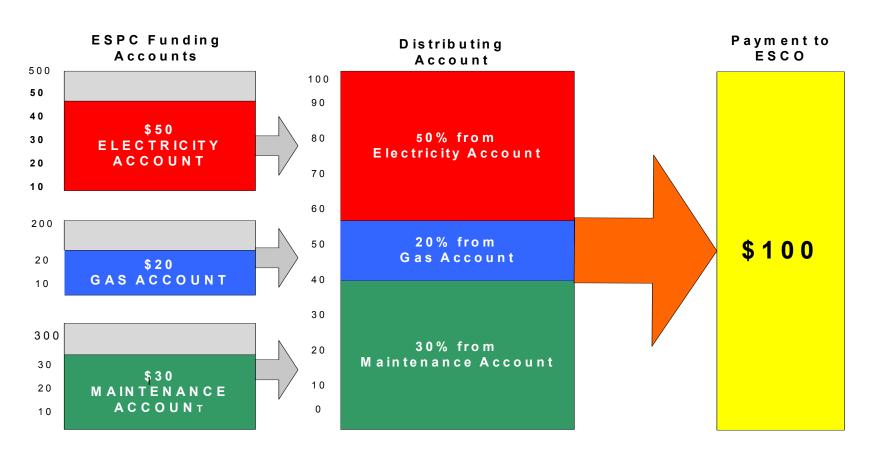

- Maximum Contract Term of Up To 25 years Supports Extensive Infrastructure Upgrades and Major System Improvements.
- ESCO Responsible for Development, Design, Turnkey Installation, Commissioning and Proper Operation before Payments Made.
- Bundling Long and Short Payback Projects to Achieve a Combined Payback that is Acceptable and Financeable (Provides Leverage for Longer Payback DG/CHP and Central Plant Type Infrastructure Projects).
- Warrantees, OM&R and Annual M&V Ensures Savings Persistence.
- Emphasis on Solving both Short- and Long-Term Problems.
- Rational and Economic Allocation and Risk Sharing of OM&R.
- Service Phase Component Allows for Budgeting for Long-Term OM&R.
- Truly a Long-Term Partnership Between Facility and ESCO.



Cash Flow Example

ESPC reallocates the utility and O&M bill to:

- Pay a lower utility bill
- Reduce O&M Cost
- Pay the contractor
- Achieve cost savings for the Customer



Project Costs Paid From Existing Energy / O&M Budgets.

Distributing Account Funding Example

Integrated ESPC Program for NRSW

- Applied Technologies
- Highlighted "Green" and DG/CHP Technology Applications
- Project Economics

Applied Technologies

- 750 kW solar photovoltaic (PV) covered parking structure and a 30 kW roof mounted PV array
- Two 60 kW microturbine CHP Systems
- Energy efficient lighting upgrade of HID fixtures with Bi-level HIDs/Bi-axial T5 fluorescent fixtures, 650 skylights and lighting controls system with local control panels, automatic timer controls and daylighting controls.
- DDC upgrade with complete conversion of existing controls to a DDC system connected to an Area-Wide EMCS.
- Upgrade and expansion of existing underground irrigation system with centralized and satellite automation controls.
- Restoration and Conversion of selected HVAC systems to VAV operation through controls and VFDs.
- Replacement of air-cooled chillers with new, high efficiency models and installation of VFDs on chilled water (CHW) pumps.
- Major improvements to facility compressed air plants and systems.

Highlighted "Green" and DG/CHP Technology Applications

Project Economics

Energy Conservation Measures (ECMs)	Total Installed	Total	Simple
	Project Cost	Savings	Payback (yrs)
Energy Efficient Lighting Upgrade & Skylights	\$4,904,746	\$623,532	7.9
Install DDC Controls Upgrades	\$979,023	\$135,115	7.2
Chiller Replacements at NAB	\$431,939	\$38,624	11.2
30 kW Solar Photovoltaic Array – NAB Bldg. 14	\$358,407	\$9,582	37.4
750 kW Solar Photovoltaic System – NASNI	\$7,710,790	\$228,305	33.8
Microturbine CHP System and VFDs – NAB	\$662,247	\$78,143	8.5
Irrigation System Upgrade and Automation	\$2,978,988	\$283,804	10.5
Compressed Air System Upgrade – NASNI	\$1,322,469	\$394,923	3.3
HVAC System Improvements - NASNI	\$1,642,878	\$174,817	9.4
Compressed Air System Upgrade – NAVSTA	\$1,171,411	\$295,745	4.0
Total Project Installed Cost	\$22,162,898	\$2,262,590	9.8
Total Navy and DoD Prepayments	\$4,600,624		
DoE Grants, Utility Rebates and State Incentives	\$3,930,000		
Net Remaining Project Cost	\$13,632,274	\$2,262,590	6.0
Project Financed Term	10 Years		

Effectiveness of ESPC Model for DG/CHP Projects

- Model Compatibility
- Keys to Success

Model Compatibility

- Ability to Use Verifiable Generated Savings to Pay for Capital Investment.
- Sufficiently Long Contract Term (Up to 25 Years).
- Design-Build Approach Allows for Fast Track Implementation.
- Best Value (Not Low Bid) Contractor Selection.
- Integrated Bundling of Long and Short Payback Projects Provides Financial Leverage for DG/CHP Projects.
- OM&R Cost and Savings Recognition, and Annual M&V Provides for Life-Cycle Accounting of Cost/Benefits.
- Provision for Long-Term Operational Reliability With Warrantees and Service Phase Budgets (Avoids Deferred Maintenance Syndrome).
- Rational and Economic Allocation of Risk.
- Ability to Engage in a True Long-Term Energy Partnership.

Keys to Success

- Viable Project
- Effective Communication
- Strong Partnership
- Willingness to Be Flexible
- Stakeholder Position
- Site/Agency Champions